A new method for determining the radius of regularity of parametric interval matrices

Lubomir Kolev¹ and Iwona Skalna² and Milan Hladík³

¹Technical University of Sofia, 1000 Sofia, Bulgaria
²AGH University of Science and Technology, Poland
³Charles University, Czech Republic

Abstract

The problem of determining the radius of regularity r^* of a parametric interval matrix is known to be NP-hard. In this paper a method for determining r^* is suggested, whose time complexity is not a priori exponential. The method is based on an equivalent transformation of the original problem to the problem of determining the real maximum magnitude (RMM) eigenvalue λ^* of an associated parametric generalised eigenvalue problem. The proposed method determines the regularity radius in polynomial if certain sign conditions are fulfilled. Otherwise, it produces upper bound \bar{z} on r^* . Numerical examples of parametric interval matrices of large size illustrate the potential of the method.

Keywords

Parametric interval matrix, Regularity, Regularity radius.

References

- [1] Kolev, L. (2011). A method for determining the regularity radius of interval matrices. *Reliable Computing* 16, 1–26
- [2] Kolev, L. (2014). Regularity radius and real eigenvalue range. Applied Mathematics and Computation 233, 404-412