Kronecker product approximation via entropy loss function

Katarzyna Filipiak¹, Daniel Klein², Augustyn Markiewicz³, and Monika Mokrzycka⁴

¹Poznań University of Technology, Poland ²P. J. Šafárik University, Košice, Slovakia ³Poznań University of Life Sciences, Poland ⁴Technical Communication College, Poznań, Poland

Abstract

The aim of this talk is to determine the best approximation of a positive definite symmetric matrix Ω of order n by $\Psi \otimes \Sigma$, where square matrices Ψ and Σ are arbitrary (unstructured) or one of them, say Ψ , can be structured as compound symmetry (CS) correlation, i.e., $(1-\varrho)\mathbf{I} + \varrho\mathbf{1}\mathbf{1}^{\top}$, or autoregression of order one (AR(1))) correlation, i.e., $\sum_{i=0} \varrho^i (\mathbf{C}^i + \mathbf{C}^{i\top})$ with $\mathbf{C} = (c_{ij})$, and $c_{ij} = 1$ if j - i = 1 and 0 otherwise. The best approximation means here that the entropy loss function (cf. [1])

$$f(\Omega, \Psi \otimes \Sigma) = \operatorname{tr} (\Omega^{-1}(\Psi \otimes \Sigma)) - \ln |\Omega^{-1}(\Psi \otimes \Sigma)| - n$$

is minimized with respect to $\Psi \otimes \Sigma$, where Ψ is unstructured or structured as CS or AR(1).

We show that for a given Ω and positive definite component of $\Psi \otimes \Sigma$, say Σ , the best approximation is obtained for positive definite Ψ

Presented results can be widely used in multivariate statistics, for example for regularizing the covariance structure of a given covariance matrix, for determining the estimators of covariance structure or for testing hypotheses about the covariance structures.

Keywords

Kronecker product, Approximation, Entropy loss function.

References

[1] Lin, L., N.J. Higham, and J. Pan (2014). Covariance structure regularization via entropy loss function. *Comput. Statist. Data Anal.* 72, 315–327.